skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soljačić, Marin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In social science, formal and quantitative models, ranging from ones that describe economic growth to collective action, are used to formulate mechanistic explanations of the observed phenomena, provide predictions, and uncover new research questions. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture non-linear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of non-linear models and enabling fine-grained control over expressivity and interpretability. 
    more » « less
    Free, publicly-accessible full text available January 31, 2026
  2. Abstract Optical computing often employs tailor-made hardware to implement specific algorithms, trading generality for improved performance in key aspects like speed and power efficiency. An important computing approach that is still missing its corresponding optical hardware is probabilistic computing, used e.g. for solving difficult combinatorial optimization problems. In this study, we propose an experimentally viable photonic approach to solve arbitrary probabilistic computing problems. Our method relies on the insight that coherent Ising machines composed of coupled and biased optical parametric oscillators can emulate stochastic logic. We demonstrate the feasibility of our approach by using numerical simulations equivalent to the full density matrix formulation of coupled optical parametric oscillators. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  3. Abstract Conservation laws are key theoretical and practical tools for understanding, characterizing, and modeling nonlinear dynamical systems. However, for many complex systems, the corresponding conserved quantities are difficult to identify, making it hard to analyze their dynamics and build stable predictive models. Current approaches for discovering conservation laws often depend on detailed dynamical information or rely on black box parametric deep learning methods. We instead reformulate this task as a manifold learning problem and propose a non-parametric approach for discovering conserved quantities. We test this new approach on a variety of physical systems and demonstrate that our method is able to both identify the number of conserved quantities and extract their values. Using tools from optimal transport theory and manifold learning, our proposed method provides a direct geometric approach to identifying conservation laws that is both robust and interpretable without requiring an explicit model of the system nor accurate time information. 
    more » « less
  4. Abstract Deep learning techniques have been increasingly applied to the natural sciences, e.g., for property prediction and optimization or material discovery. A fundamental ingredient of such approaches is the vast quantity of labeled data needed to train the model. This poses severe challenges in data-scarce settings where obtaining labels requires substantial computational or labor resources. Noting that problems in natural sciences often benefit from easily obtainable auxiliary information sources, we introduce surrogate- and invariance-boosted contrastive learning (SIB-CL), a deep learning framework which incorporates three inexpensive and easily obtainable auxiliary information sources to overcome data scarcity. Specifically, these are: abundant unlabeled data, prior knowledge of symmetries or invariances, and surrogate data obtained at near-zero cost. We demonstrate SIB-CL’s effectiveness and generality on various scientific problems, e.g., predicting the density-of-states of 2D photonic crystals and solving the 3D time-independent Schrödinger equation. SIB-CL consistently results in orders of magnitude reduction in the number of labels needed to achieve the same network accuracies. 
    more » « less
  5. Abstract Identifying the governing equations of a nonlinear dynamical system is key to both understanding the physical features of the system and constructing an accurate model of the dynamics that generalizes well beyond the available data. Achieving this kind of interpretable system identification is even more difficult for partially observed systems. We propose a machine learning framework for discovering the governing equations of a dynamical system using only partial observations, combining an encoder for state reconstruction with a sparse symbolic model. The entire architecture is trained end-to-end by matching the higher-order symbolic time derivatives of the sparse symbolic model with finite difference estimates from the data. Our tests show that this method can successfully reconstruct the full system state and identify the equations of motion governing the underlying dynamics for a variety of ordinary differential equation (ODE) and partial differential equation (PDE) systems. 
    more » « less
  6. null (Ed.)
  7. Particles placed inside an Abelian (commutative) gauge field can acquire different phases when traveling along the same path in opposite directions, as is evident from the Aharonov-Bohm effect. Such behaviors can get significantly enriched for a non-Abelian gauge field, where even the ordering of different paths cannot be switched. So far, real-space realizations of gauge fields have been limited to Abelian ones. We report an experimental synthesis of non-Abelian gauge fields in real space and the observation of the non-Abelian Aharonov-Bohm effect with classical waves and classical fluxes. On the basis of optical mode degeneracy, we break time-reversal symmetry in different manners, via temporal modulation and the Faraday effect, to synthesize tunable non-Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely ordered path integrals, demonstrates the noncommutativity of the gauge fields. Our work introduces real-space building blocks for non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena. 
    more » « less